Infalibilidad de la mente pura

Robert Hugh Benson no es un apologeta cualquiera. Sus argumentos buscan injertarse en la filosofía y en la ciencia y muchas veces dan giros inesperados. Así ocurre en su artculo titulado Infallibility and Tradition, cuando quiere demostrar cómo es posible que el Papa sea infalible. Describe de esta manera el mecanismo de la infalibilidad: “Así que infalibilidad en su sentido ms escueto no quiere decir más que esto: que la consciencia divina de la Iglesia está relacionada de tal manera con la consciencia humana, que la salvaguarda de formular cualquier afirmación en contradicción con la verdad. Implica que hay un canal, abierto entre la mente de Cristo y el conjunto de las mentes que componen su mística consciencia, de un tipo tal que la primera controla y verifica a esta última”[1].
Para iluminar esta explicacin, Benson busca una analogía de nuestro mundo natural. “Necesitamos, por tanto, como paralelismo de la posición de Infalibilidad en el esquema de la Iglesia, una mente, un objeto, y una relación entre ellos, que correspondan con la consciencia explícita de la Iglesia, el depósito y la Infalibilidad; y, para que la analogía sea completa, la relación en nuestra analogía debe ser idéntica a la relación de la cual es una analogía”[2].
Nunca me hubiera imaginado que la encontrara, y ni más ni menos que en el campo de las ciencias exactas. El argumento se explica por sí mismo: “Estrictamente hablando […] el objeto material de las ciencias exactas no tiene existencia concreta; consiste en abstracciones formadas por la mente. No hay un dos en el mundo objetivo: solo hay dos caballos o dos manzanas. Estrictamente hablando, igualmente, no existe una línea ni un punto ni un círculo. Por tanto, dado que las ciencias de la aritmética y la geometría son abstracciones formuladas por la mente, son el único objeto respecto al cual la mente es infalible. La mente es literalmente infalible en aritmética”[3].
Aparte la sorpresa que provoca el argumento, una dificultad salta directamente a la vista: de hecho nos equivocamos en aritmética. Benson es consciente de ello: las mentes individuales pueden cometer errores, y de ello son conscientes todos los colegiales[4], pero nos dice que esto se debe a otras causas, como, por ejemplo, a las emociones, las distracciones, etc. Entonces refina un poco la conclusión de su argumento. La mente pura, abstraída de todo lo demás, es incapaz de error en estas materias[5]. Creo que está bastante claro que no debe entenderse mente pura como mente limpia, candorosa, etc. A mi entender el autor se refiere a la mente en estado puro, sin tener en cuenta las particularidades de las mentes individuales. Sería una acepción de la palabra pura más cercana al uso que hace Kant de esta palabra en su crítica de la razón pura. Así, se podría entender la construcción mente pura como las condiciones de posibilidad de toda mente. Ahora bien, sin demérito de este argumento, Kant sitúa el origen de las ciencias exactas en la sensibilidad.

——

[1] For infallibility in its barest sense means no more than this that the divine consciousness of the Church is related in such manner to the human consciousness that if safeguards it from formulating a statement in contradiction to truth. There is, it is claimed, such a channel open between the mind of Christ and the aggregate of the minds that compose His mystical consciousness, that the former controls and checks the latter (Infallibility and Tradition, p. 5).
[2] We need, therefore, as a parallel to the position of infallibility in the scheme of the Church, a mind, and object, and a relation between them corresponding to the explicit consciousness of the Church, the depositum and Infallibility; and, in order that the analogy may be complete, the relation in our analogy must be identical with the relation in that of which it is an analogy. (Infallibility and Tradition, p. 18).
[3] Stricly speaking [] the subject-matter of the exact sciences has no concrete existence; it consists of bstractions formed by the mind. There is no such thing as two in the objective world: there are only two horses or two apples. Strictly speaking, again, there is no such thing as a line, or a point, or a circle. Since, therefore, the sciences of arithmetic and geometry are abstractions formulated by mind, they are the one and only subject in which pure mind is infallible. Mind is literally infallible in arithmetic (Infallibility and Tradition, p. 18).
[4]  Individual minds may make mistakes, as every schoolboy is ware (Infallibility and Tradition, p. 18).
[5]  Pure mind, abstracted from all else, is incapable of error in these matters (Infallibility and Tradition, p. 18).

Esta entrada fue publicada en Artículos y etiquetada . Guarda el enlace permanente.

Deja un comentario